Atomic spectroscopy

Atomic spectroscopy may be divided into two classes
Optical atomic spechoscopy and atomic mass
spechoscopy.
Optical atomic spectroscopy is subdivided into
Hiner classes @ Atomic Monorphion spechoscopy
(b) atomic fhorescence spechoscopy and
(c) Atomic emission spechoscopy

(a) Alomic abrophion spechascopy:- an external Source of energy radiation impinges on the analyte vapour and if the external source of radiation is of appropriate frequency, it can be abrorbed by the analyte vapour of about and promote them to excited states. For example Bodium vapour abrorbs readiation of 285, 330 and 590 nm to excite 35 election to 5P, 4P and 3P serpectively.

(b) Emission spectroscopy: - analyle atoms are
excited by external source of energy in the
form of heat on electrical energy
For example, atomic sodium exhibits three
emission spechal lines of wavelength 285, 330
2 590 nm. The partial energy level diagram
of ordium shows that theremal or electrical
energy purmit: 35 electrone to 3P. 4P 25F

oribibilis and after a few nano seconds, the
excited atoms relax to ground state, giving up
their energy as photons of visible and uv
radiation of wave length 590
330 g 285 nm.
A transition to or from the
ground state called a resenance }}
transition, and the resulting
spectral line is called resonance line.

Fluorescence Spechoscopy To atomic fluorescence spechoscopy, an external source is used just as in adomic aborsphion and emitted tradiation from the excited atom is measured at the oight ongle of incident radiation. Atomic fluorescence is often measured at the same ware length as the source wavelength.

Width of spechal lines: - Atomic spechal lines have finite widths and the factors that contribute to atomic spectral line widths seve includes: a) Natural broadening: - The natural line width of an atomic spectral line is determined by the life time of the excited State and Heisenberrg's uncertainty principle The shorter the life time the index the spectral lines and vice versa. The one form of uncertainty principle may be written as SE.st = th where St may be consider as life time of a excited atom. Thus shorter life time results broader lines. Genercelly Typical radiative life times of atoms are on the order of 10⁻⁸ s, which leads to natural line Widths on the order of 10⁵ nm

Cellisional broadening: - Collisions between atoms and molecules in the gas phase causes deachination of excited state and thus broadening of the spectral line. The extent of broadening mocreases with increasing concentration is Prosume i.e., Pressure of the collision partners. Is a result cellisional broadening also called preserve breadening cellisional broadening also increases with increasing increasing temperature. Collisional broadening highly dependent on the gaseous medium and and collisional broadening greatly exceeds the natural broadening of the spechal line. For Na altors, in flame, such broadening can be as great large as 10³ nm. Doppler broadening - doppler broadening results from the rapid motion of atoms as they emit OR abrook radiation. Atoms moving hward the detector wavelenghs that are slightly shorter than the wave longth emitted by the atoms moving right angles of the detector. The effect is reversed for the atoms moving away from the detectore. The net effect is on increase in the width of emission lines For the some nearon, Doppler effect causes the broadening of absorption lines. Dopplet broadening in creases with increasing temp, as because increase of the tempercature in creases the velocity of atoms. Doppler broadening can be a major contributor to overcall line widths. For Na, in thames, the & Doppler broadening of lines is in the order of Axio3- 5x10-3 nm

Advantages of atomic spectroscopy:
i) Homic spectroscopy could be used both for
greating and with the used both for
gualitative and quantitative determination of
morre than 70 elements
1) This method can detect minute quantity of
sumple and detection limit is parts-pert-million.
TO parts-per-billion, In some cases it can
derect even lesser concentration
iii) The method is very trapid, convenient and
ausually of high selectivity.
1) Spectroscopic determination of atomic species
can only be performed on a gareous medium.
so mey are well separcated from one
another and interaction among them is
negligible
Atomisation is a crucial step and has large
influence on sensitivity, precision and

accurracy of the method

Effect of flame tempercature: - Both abrosption &
emission spectra are affected by flame tempercature
in a complex way.
i) Higher temperature increases the total atom
population and thus sensitivity. But in many
Cerses, metecase of atom population is more
Than off-set by the loss of atoms by ionisation.
") Flame remperature also determine the rolation
population of excited and unexcited atoms.
Four example, in aire-acetylene flame,
excited and unexcited population ration 198
10° and that for oxygen-acetulence freme
is 10 ⁻⁶ Number of unexcited atoms in a
typical flame exceeds the number of excited
atoms by a factor of 103 - to - 1010 or some
Cases even more. Thus, absorption method
shows lower detection limits than emission
method.
The relationship between the ground state
and excited state population may be obtained
from Boltzman distribution law :-
$\frac{Ni}{2} = \frac{g_i}{e} e^{-\Delta E/kT}$
$N_0 = \frac{g_0}{g_0}$
Thus the ratio depends of on SE and Tempercature.
9, 19 is ratio of statisfical weights for ground
State and excited state.

· Advantages of abromption spectrascopy over emission: -
1) Abrongation spectra of most elements are simple in
natarre as compared to atomic emission spectra.
Emission spectra is complex because emission
spectra may occur many different ways like
E_3-E_2 , E_3-E_1 , E_2-E_1 etc.
ii) Only a small fraction of atoms is excited and
ground state mostly populated thus atomic
aboutption spectra is process is more sensitive
aboutption spectra is process is more sensitive than atomic emission emission. Though
in wave length of resonance line is a critical
factor, and elements whose resonance lines
are associated with relatively low energy values
are more sensitive (as far as flame emission
Spechoscopy is concerned) than those whose
resonance lines are associated with high
energy values.

Interference:-

(1) spectral interference: _ spectral interference
some time occurs due to overlap between
the frequencies of selected resonance lines
with lines emitted by other elements.
Some spectral interference occurs may
OCCUR from the emission band spectree of
produced by molecules one molecular fragments

present	ìn	the	Hame	gases.	
, ,					-

ii) Chanie I istrategenerge
ii) chemical interference: -
a) stable compound formation - stable compound
formation leads to incomplete dissociation
of the substances or it may arrive due
to it may occur due to the formation of
refractory compound with in the flame and
that fails to dissociate of into constituents.
Few examples of such refractorcy compounds
mclude: Casoq, Gapoq, Ti, V & Al onide etc.
Stable Compound formation could be overcome
by 11) Increasing flame temperature
(11) Adding releasing agents like EDTA &
(11) Extracting analyle on removing interife
interfering chemicals.
b) lonisation of ground state gaseous atoms
will reduce the intensity of emission lines.
This can be minimised by selecting
appropriate temperature and adding conisation
supressant (solution contains a cation
having lower io nisation potential, like
Dotassium.
> Matrix effect: - Physical factors like
viscosity, density etc.
d) Molecular ab suption:

REFERENCE: Fundamentals of Analytical Chemistry. Skoog, West, Holler & Crouch, 8th Edition, Cengage Learning publication; page 839-873